Regional Development Classification Model using Decision Tree Approach

نویسندگان

  • Tb. Ai Munandar
  • Edi Winarko
چکیده

Regional development classification is one way to look at differences in levels of development outcomes. Some frequently used methods are the shift share, Gain index, the Iindex Williamson and Klassen typology. The development of science in the field of data mining, offers a new way for regional development data classification. This study discusses how the decision tree is used to classify the level of development based on indicators of regional gross domestic product (GDP). GDP Data Central Java and Banten used in this study. Before the data is entered into the decision tree forming algorithm, both the provincial GDP data are classified using Klassen typology. Three decision tree algorithms, namely J48, NBTRee and REPTree tested in this study using cross-validation evaluation, then selected one of the best performing algorithms. The results show that the J48 has a better accuracy rate which is equal to 85. 18% compared to the algorithm NBTRee and REPTree. Testing the model is done to the six districts / municipalities in the province of Banten, and shows that there are two districts / cities are still at the development of the status quadrant relatively underdeveloped regions, namely Kota Tangerang and Kabupaten Tangerang. As for the Central Java Province, Kendal, Magelang, Pemalang, Rembang, Semarang and Wonosobo are an area with a quadrant of development also on the status of the region is relatively underdeveloped. Classification model that has been developed is able to classify the level of development fast and easy to enter data directly into

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

Designing a model for analyzing the development of regional universities by using Interpretative-Structural Modeling Approach

Today, causal relationships between universities and regions indicate that if there is synergy between the university system and the regional system, both sides will benefit from the value added. The purpose of this study was to present a suitable and efficient model for analyzing the development of university-region relations. In this study, mixed-exploratory research design method was used. I...

متن کامل

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

An Integrated DEA and Data Mining Approach for Performance Assessment

This paper presents a data envelopment analysis (DEA) model combined with Bootstrapping to assess performance of one of the Data mining Algorithms. We applied a two-step process for performance productivity analysis of insurance branches within a case study. First, using a DEA model, the study analyzes the productivity of eighteen decision-making units (DMUs). Using a Malmquist index, DEA deter...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1505.05321  شماره 

صفحات  -

تاریخ انتشار 2015